Learning Undirected Graphical Models with Structure Penalty

نویسنده

  • Shilin Ding
چکیده

In undirected graphical models, learning the graph structure and learning the functions that relate the predictive variables (features) to the responses given the structure are two topics that have been widely investigated in machine learning and statistics. Learning graphical models in two stages will have problems because graph structure may change after considering the features. The main contribution of this paper is the proposed method that learns the graph structure and functions on the graph at the same time. General graphical models with binary outcomes conditioned on predictive variables are proved to be equivalent to multivariate Bernoulli model. The reparameterization of the potential functions in graphical model by conditional log odds ratios in multivariate Bernoulli model offers advantage in the representation of the conditional independence structure in the model. Additionally, we impose a structure penalty on groups of conditional log odds ratios to learn the graph structure. These groups of functions are designed with overlaps to enforce hierarchical function selection. In this way, we are able to shrink higher order interactions to obtain a sparse graph structure. Simulation studies show that the method is able to recover the graph structure. The analysis of county data from Census Bureau gives interesting relations between unemployment rate, crime and others discovered by the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Higher-Order Graph Structure with Features by Structure Penalty

In discrete undirected graphical models, the conditional independence of node labels Y is specified by the graph structure. We study the case where there is another input random vector X (e.g. observed features) such that the distribution P (Y | X) is determined by functions of X that characterize the (higher-order) interactions among the Y ’s. The main contribution of this paper is to learn th...

متن کامل

Graphical Model Structure Learning with 1-Regularization

This work looks at fitting probabilistic graphical models to data when the structure is not known. The main tool to do this is `1-regularization and the more general group `1-regularization. We describe limited-memory quasi-Newton methods to solve optimization problems with these types of regularizers, and we examine learning directed acyclic graphical models with `1-regularization, learning un...

متن کامل

A Brief Introduction to Graphical Models and How to Learn Them from Data

Graphical Models: Core Ideas and Notions A Simple Example: How does it work in principle? Conditional Independence Graphs conditional independence and the graphoid axioms separation in (directed and undirected) graphs decomposition/factorization of distributions Evidence Propagation in Graphical Models Building Graphical Models Learning Graphical Models from Data quantitative (parameter) and qu...

متن کامل

Mixed and Covariate Dependent Graphical Models

Mixed and Covariate Dependent Graphical Models by Jie Cheng Co-Chairs: Assoc. Prof. Elizaveta Levina and Prof. Ji Zhu Graphical models have proven to be a useful tool in understanding the conditional dependency structure of multivariate distributions. In Chapters II and III of the thesis, we consider two types of undirected graphical models that are motivated by particular types of applications...

متن کامل

Neural Variational Inference and Learning in Undirected Graphical Models

Many problems in machine learning are naturally expressed in the language of undirected graphical models. Here, we propose black-box learning and inference algorithms for undirected models that optimize a variational approximation to the log-likelihood of the model. Central to our approach is an upper bound on the logpartition function parametrized by a function q that we express as a flexible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1104.5256  شماره 

صفحات  -

تاریخ انتشار 2011